A property of Cesàro-Perron integrals
نویسندگان
چکیده
منابع مشابه
Paths of matrices with the strong Perron-Frobenius property converging to a given matrix with the Perron-Frobenius property
A matrix is said to have the Perron-Frobenius property (strong Perron-Frobenius property) if its spectral radius is an eigenvalue (a simple positive and strictly dominant eigenvalue) with a corresponding semipositive (positive) eigenvector. It is known that a matrix A with the Perron-Frobenius property can always be the limit of a sequence of matrices A(ε) with the strong Perron-Frobenius prope...
متن کاملEla Paths of Matrices with the Strong Perron-frobenius Property Converging to a given Matrix with the Perron-frobenius Property∗
A matrix is said to have the Perron-Frobenius property (strong Perron-Frobenius property) if its spectral radius is an eigenvalue (a simple positive and strictly dominant eigenvalue) with a corresponding semipositive (positive) eigenvector. It is known that a matrix A with the Perron-Frobenius property can always be the limit of a sequence of matrices A(ε) with the strong Perron-Frobenius prope...
متن کاملTwo characterizations of matrices with the Perron-Frobenius property
Two characterizations of general matrices for which the spectral radius is an eigenvalue and the corresponding eigenvector is either positive or nonnegative are presented. One is a full characterization in terms of the sign of the entries of the spectral projector. In another case, different necessary and sufficient conditions are presented that relate to the classes of the matrix. These charac...
متن کاملEla on General Matrices Having the Perron-frobenius Property∗
A matrix is said to have the Perron-Frobenius property if its spectral radius is an eigenvalue with a corresponding nonnegative eigenvector. Matrices having this and similar properties are studied in this paper as generalizations of nonnegative matrices. Sets consisting of such generalized nonnegative matrices are studied and certain topological aspects such as connectedness and closure are pro...
متن کاملOn general matrices having the Perron-Frobenius Property
A matrix is said to have the Perron-Frobenius property if its spectral radius is an eigenvalue with a corresponding nonnegative eigenvector. Matrices having this and similar properties are studied in this paper as generalizations of nonnegative matrices. Sets consisting of such generalized nonnegative matrices are studied and certain topological aspects such as connectedness and closure are pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1940
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500024688